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Polarized dark solitons in isotropic Kerr media
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We characterize dark-type vector optical solitons of arbitrary polarization in isotropic, Kerr-type media by
applying Hirota’s method to the integrable Manakov model with a defocusing nonlinearity. We find that
nonuniformly polarized solitons comprise a rich solution family that can be divided into two categories:
dark-dark and dark-bright vector solitons. We consider the propagation dynamics and the interactions of these
vector solitons by deriving multisoliton solutions, and show the existence of stationary bound states, a phe-
nomenon not observed for scalar dark solitdi81063-651X97)10404-4

PACS numbeps): 42.65.Tg, 42.81.Dp, 03.40.Kf

I. INTRODUCTION Manakov equation is a vector nonlinear Salinger (NLS)
equation possessing the symmetry of the second unitary

The theory of solitons and solitary waves has turned oufU(2)] group, and was shown by Manakgi/7] to be inte-
to be relevant to a variety of different physical processesgrable. He integrated it by extending the method of the in-
However, it is in the field of guided wave optics that solitonsverse scattering transfor(hST), that had already been used
have made the greatest experimental impact. Optical fibeto integrate the Korteweg—de Vries equation and the scalar
transmission systems have been realized using temporaljJ (1)] NLS equatior{20]. This enabled him to characterize
confined solitons propagating as pulses in one dimeridibn the interaction between two bright solitons of arbitrary po-
More futuristically, nonlinear switches that rely on the inter- larization. The spectral problem associated with the Mana-
action between spatially confined solitons are being investikov equation is X 3, and analytical investigation tends to be
gated in a variety of medig2—4]. Solitons on a background frustrated by algebraic complexity which is exacerbated by
field, also known as dark solitons, typically appear as localthe noncommutativity of the underlyinty (2) symmetry
ized intensity dips on a finite carrier wal/g], and, like their  group. There was, until recently, little addition to the original
bright counterparts, have been observed in fidéisand  work of Manakov.
waveguideq7]. They are generally more robust than bright While the scalar nonlinear Schiimger equation was
solitons, and have been the object of recent research considelved many years ago for nonzero boundary conditions
ering the influence of polarizatio8—10. [21], no such work has been completed for the Manakov

In general, the nonlinear response of isotropic materialgquation. Perhaps researchers believed that the constraints
can be anisotropic, as can be seen from a phenomenologicahposed by the nonzero background field would reduce it to
analysis of the symmetries of the higher-order susceptibilitya simple generalization of the scalar NLS equation. In any
tensorsy(™ [11]. However, in the simplest model of a non- case application of the IST to the Manakov equation with
linear medium, one assumes that the medium is completelgonzero boundary conditions is no small task, involving the
characterized by a refractive index change which dependstudy of three-sheet Riemann surfaces. Recefitl}, the
only on the total intensity. This model is valid for electro- Hirota method was applied to the Manakov equation as a
strictive media, and materials in which the nonlinearity ismore straightforward way of deriving explicit bright and
slightly nonlocal in either space or timj@2]. Many liquids  dark N-soliton solutions. Unfortunately, owing to an over-
and gases fall into this category. It has also been shown, botight, the authors find solutions that are apparently only
numerically[13] and now analyticallyf14], that the anisot- trivial generalizations of solutions to the scalar NLS equa-
ropy induced in silica fibers averages to zero over longion.
propagation distances on account of stochastic variations in This work examines particularly the dark solitons that one
the fiber characteristics. More concretely, recent spatial solifinds in systems described by the Manakov model with a
ton experiment$15,16 have shown that AGa, _,As semi-  defocusing nonlinearity. Considering the field to be com-
conductors, operated at the half-band-gap, can also be epesed of two orthogonally polarized field components, there
tirely isotropic at the nonlinear level. are two possible ways to generalize a scalar dark soliton

Studying the propagation of quasimonochromatic,formed in one component only. The second field component
paraxial light beams, and considering only an isotropic thirdimay also form a kink structure, or it may be localized in the
order (Kerr) nonlinear response, one may derive the Mana+egion of the dark soliton. These two classes turn out to be
kov model for paraxial light beams in diffractive medie/y], = fundamentally different. This study will characterize these
including semiconductors operated at the half-band{@8h  individual solitons, then use the Hirota method to search for
and for wave packets in dispersive optical fibglr8,14). The  the multisoliton solutions which describe elastic soliton in-
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teractions in the absence of radiative components. The types When considering solitons of nonuniform polarization,
of solutions one obtains from an analytical study of this sortand thereby introducing the field component, one has the

are constrained by the infinity of conservation laws pos-option to either localize_ by restricting its intensity to zero
sessed by all the soliton equations. One can predict in ader x— *«, or leave it delocalized with any finite intensity
vance the usual soliton properties: solitons survive all colli-at infinity. We shall see in the course of this paper that these
sions with their amplitude and direction intact, but maytwo cases are fundamentally different. The unrestricted case
suffer changes in their position and phase. In this paper wikeads to more traditional vector dark solitons of the type that
will highlight particularly the less evident effects of the in- were considered if8] and[10], in which there is an intensity

terplay between the polarization components. dip in both polarization components at the center of the soli-
ton. We call these dark-dark solitons, since both components
Il. HHROTA'S METHOD AND DARK-TYPE describe a dark-type mode. Localizing the field leads to dark-
MANAKOV SOLITONS bright solitons, first investigated 9], in which thee_ com-

ponent is a bright localized mode confined by the presence of
the other component.

The Manakov model for describing thegl+1)- To characterize these Manakov dark solitons, we apply
dimensional stationary propagation of light of arbitrary po-the method of Hirotd22], and first transform Eq2) into a
larization in defocussing media leads to 1Hé2) nonlinear  bilinear form. We do this by introducing the Hirota functions

A. General formalism

Schralinger (NLS) equation[17,14,19 f(x,2), 9(x,2), andh(x,z), such that
de 1 3% e,=g/f ande_=h/f. (5)
o= -v=_ 24 +
It 552 lel“e=0, (1)

There is no loss of generality in assumifdo be real. Ex-
wherex andz are the transverse and longitudinal coordinategpressing the Manakov equations in termsfpfg, andh is
respectively, and(x,z) is a two-component vector describ- simplified by making use of the Hirota bilinear operator
ing transversely polarized light. It is easiest to decompose men o on
into orthogonal polarization components; we choose the la- DD (f-9)=(dx— %) "(d,— )
belse, (x,z) ande_(x,z) as the envelopes of two arbitrary -
but orthogonal polarizations, in which E(L) reads XX\ 2D ]xx 22 ©

2 The Manakov equation can now be written in the simple
gex  1o%e. 2 2ya, =0 2 forms
i——+ 5z (e e e.= 2
: : . o Bi(g-f)=0, By(h-f)=0, 0
If we confine the light to a single polarization state, say
e, , then the problem reduces to tb€1) NLS equation that B,(f-f)=—|g|>~|h|%, ®)
possesses as soliton solutions the family of dark solitons.
The most general expression for the dark soliton is whereB; andB, are bilinear operators defined by
e. = r{ising+cosp tanta(x—bz) 921712 (3) B;=iD,+3Di~x, B=3Di—x.

The dark soliton induces a corresponding change of the me=ollowing [10], we introduce the parametgr necessary for
dium refractive index change which is proportional to thethe search for dark solitons. Considering plane-wave solu-
total field intensity tions of the forme. =e%e*="" leads to the identitye?|?

2 142 2 o +|e°|2= x, which shows thaj, which must be real, dictates

An®=|e®=7"~a’ secfifa(x—b2)], @ the total intensity of the background field.
where ¢=arctafi(c—b)/a], and the soliton parameters are _On?e an equation has been written in a bilinear form,
connected by the constraira®+ (c—b)2=72, otherwise Hwotgs method proceeds by assuming thgt each H|rqta
function can be written as a polynomial function of an arbi-

trary parameteh. The theoretical basis for this approach is
still not well understood. Nevertheless, it is clear that the
the background, while gives its direction. Across the soli- Hirota method provjdes a cqnvenient presc'ription for finding
ton, there is a phase jump in the background wave Otf:Io_sed-form analytlcal solutions to many, if not all, of the
7— 24, topologically trapping the soliton. The contrast of SClton equations.
the soliton, defined as the ratio between the maximum and
minimum intensities, is given by cé$. Note that after hav- B. Dark-dark solitons

ing defined the background fielby fixing 7 andc), the Our initial task is to find individual, static, dark-dark soli-

soliton is characterized completely by the single parametefons. To do this we introduce an ansatz normally used for
b; the width, contrast, and phase jump are all defined by itfinding topological solitons:

For b=c, we have a black soliton of unity contrast, and a

m phase shift traveling parallel to the background wave, 9=0o(1+\?gy),

while, asb—c=* 7 (or ¢— 7/2), the soliton contrast and the

phase shift both drop to zero. h=ho(1+\%h,) and f=1+\?f,. 9

written asa= * 7 cosp. The soliton therefore exists in the
domainc— r<b<c+ 7. It describes a localized kink struc-
ture on a background plane wavegives the amplitude of



55 POLARIZED DARK SOLITONS IN ISOTROPIC KERR MEDIA 4775

a A X le.f B 2 le.f
a O D I (— ] R | p— | o —
(a) 1
\L 1
b
I | | |
4 0 4 X -4 0 4 X
C le.f D le.f
a SSRIE| ST | PS——— T Spc—

(b) :

1 1 1 1
/\J b = s 12 2 : 2

FIG. 2. Some examples of the intensity profiles of the single

dark-dark soliton, taken from the previous figufe.b=—0.7. B:
varied family of solutions.
(©) 1
The background field on which these solitons repose may

b=2.0.C: b=—-2.7.D: b=-0.8. It is clear that this is a rich and

be thought of as two superposed plane waves whose intensity
b and direction of travel can be independently chosen. Speci-
fying the background field leaves us with ordgedegree of
freedom for the soliton itself, as for the scalar dark soliton.
We use the soliton directioh as the independent variable;
the soliton width(defined by 14), and the soliton “grey-

FIG. 1. The single dark-dark soliton i (a) space. The soliton - con parametersp, and ¢_ are then uniquely defined
exists on the curves defined by Hd.3), presented here for three through Eq.(11)

different background fields. The backgroundginande_ become
more closely aligned in descending frd@a to (c). In (a), (b), and
(©), 7.=1.0, 7_=+2, andc,=—c_=c. (a) c=1.8, (b) c=1.3,
and (c) c=0.6. The points labeled\, B, etc. correspond to the
solitons shown in Fig. 2.

7
G,
)
y

We illustrate the characteristics of this soliton with the aid
of Figs. 1, 2, and 3. In Fig. 1 we show the soliton’s domain
of existence in§,a) space, for several different examples of
background fields. Remember thataldefines the soliton
width, and arctal is the propagation angle relative to the
axis. Therefore at the right of each plot we find the
rightwards-moving solitons and, at the left, leftwards moving
ones. Figure () illustrates a case of highly disparate back-

dground fields(i.e., in whichc, is very different fromc_),

We substitute Eq99) into Egs.(8), then equate powers of
the arbitrary parametex. There will be three equations at
each of the zeroth, second, and fourth powers.iff we can
satisfy all these equations, then we will have found a close . .
form solution to the problem. In practice, the last half of theand dar_k-dark.soht_ons are found that z_approxmately follow
equations are redundant—a correct solution will be define(ﬁiaCh<Si|d ilrectl?\ln,t Lt?l.,t r?lt’r?hly _"][b_the trhangei
completely by the identities up to the second powemnin 7= EC? IdTei - Note tha r‘? (T. poin ‘I)ICik”'e ccr)]n-
One may solve these equations by considering one order aftipst in the fielde.. is unity—the soliton is "black™ in that
time, commencing at the zeroth order. Following this proce-
dure results in a “dark-dark” vector soliton of the following
form:

e.=r7.{i sing.+cosp.tanja(x—bz)]}
Xeictx+i[ci/2+x]z (10)

with ¢.. =arctai(c..—b)/a]. The soliton parameters are con-
nected by the identity

a’=72cod¢p, + 2 cofp_ . (12)

L . . . FIG. 3. The phase dependence of the two components of a
This is an implicit identity, sinceb, and¢_ each depend on  single dark-dark soliton, here the caBefrom Figs. 1 and 2. The
a. The intensity is the same form as for the scalar soliton, componente. is shown at lefte_ at right. The soliton is propa-
gating up the page and is clearly shown to be a dark soliton propa-
|e|2= 72— a?sech[a(x—b2)] (12)  gating across two different superimposed background fields.
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component(although the total contrast will be less than
unity). For widely disparate backgrounds the existence crite-
rion Eq. (11) reduces toa=* 7. cosp. , i.e., the fields de-
couple from each other. A good example of this is shown in
Fig. 2(C), where the soliton component &1 is influenced
only minimally by the other fielee, whose profile is almost
constant. In the opposite limit of closely aligned fields
c.—cC_—c the solitons describe scalar dark solitons whose
par?methers are connected through the idertfty (b—c)?
=7,+77.

C. Dark-bright solitons

We now turn our attention to the dark-bright solitons in
which the field componerd_ is localized by the waveguide
induced bye, . To find individual, static, dark-bright soli-
tons we introduce, foh, an ansatz typically regarded as

FIG. 4. The domain of existence of the dark-bright solitons for

c=0.2 and 7=1. The soliton is found anywhere within the
circle—it is a two parameter family on a given background. On the

suitable for bright solitons, and one fgr appropriate for  perimeter the soliton becomes a scalar dark soliton without a bright
kinks: component. The labeled points and the vertical lines correspond to

9=0o(1+)\%g,), h=\h; and f=1+\2f,. (13

the examples shown in Fig. 5.

near theb axis we find the low contrast, broad solitons for

On substituting this into the Hirota equatiof®, and follow-
ing the same procedure as abdgee Sec. | of the Appen-
dix), one derives the dark-bright soliton

which the width goes to infinityg—0) and the contrast to
zero.
At the top left of Fig. 5 we show how the power in each

L, field component varies, as we traverse the range of values of
e, =1{i sing+cosp tanfa(x—bz)]}e' > 1le72+7 12 (14) 3 for various fixedb. Notice that a scalar soliton of low
contrast(i.e., very grey, traveling across the background
e :\/mSecma(x_bz)]eibx+i[(az—b2)/2—Tz]z w:?\ve can only support a small amount qf power in the
- ’(15) bright component before its width goes to infinity and con-
trast to zero. At the other end of the scale, a black-bright

where ¢, as before, is defined bg=arctar(c—b)/a], and
the solution is valid only when the inequalitya?
+(c—b)?< 7°— or a’< r?cos¢’— is satisfied. When this
constraint is satisfied as an equality, the intensityeinis
zero, and the scalar dark soliton is recovered. The replace-
ment of a strict equality by an inequality adds a degree of

soliton (i.e., b=c) can ultimately support an infinite power
in the guided component when its width goes to infinity. The
remainder of Fig. 5 shows the profiles of three different dark-
bright solitons, labeled\, B, and C from Fig. 4. In these
examples we witness the degeneration of a dark soliton: in-

freedom to the system-a andb can now be chosen inde-
pendently. This additional degree of freedom ordains the
dark-bright soliton with some interesting properties. The
dark component takes the dark soliton profile, but, as com-
pared to the dark soliton, the contrast at a given propagation
angle is reduced by the antiguiding bright component. Con-
trary to the dark-dark soliton, in this case the two fields work

le.

|2

against one another to the point that the nonlinear chang
induced bye, can be canceled by the nonlinear change of
e_. The total intensity is again the same,

le|?=72—a? secR[a(x—bz)]. (16)

Figure 4 shows the existence domain of the dark-bright soli-

tons, as defined by the constraaft+ (c—b)?<+?. On the

perimeter of this domain are the scalar dark solitons. Note 5 5 At the top left we show the dependenceRif , the

that the dark-dark solitons exist only outside this domain—i

npower in the bright componerg_, on the soliton widtha for

2 2— 2 Thi
the regiona“+(c—b)“=7". This reflects the fact that the seyeral values of the directidn The lines here correspond to those
additional dark component adds to the refractive indeXy the same style from Fig. 4. The rest of the figure shows examples

change while the localized “bright” component reduces it. of dark-bright soliton profiles, with parametes=—0.2, and )
One can view the scalar dark soliton as the common groung=0.8, (8) a=0.5, and C) a=0.2. Note the antiguiding character

between the dark-dark and the dark-bright solitons. On thef the bright component—its effect is to reduce the total guidance,
center lineb=c, the black-bright solitons are found, while thus ““greying out” the soliton.
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FIG. 6. The phase dependence of a dark-bright soliton. The dark
component, is at left, the bright componet_ at right. It is most 10+
apparent in this figure that the componentis following the wave-
guide induced for it bye, .

Z0f
creasing the parametamreduces the contrast until the soliton
disappears into the background. Figure 6 shows the phase¢ ;4|
variation of the propagating soliton of case

Ill. SOLITON INTERACTIONS

For integrable models one expects to find analytic solu-
tions not merely for the solitons themselves, but for all the
solutions that characterize their interaction in the absence of
a nonsolitonic, radiative component. We perform this calcu-
lation only for dark-bright solitons. Finding multisoliton so-
lutions is simply a question of taking a breath and extending _
the Hirota method to higher orders. Using straightforward
but messy algebra, as described in Sec. 2 of the Appendix,
one derives the two-soliton expression of EA17). The
analytical formula is not very informative of itself, and we
must resqrt to asymptotics an_d numerics to characterize and FIG. 7. Three examples of dark-bright soliton interactions. At
wsuahzg it. Consider the regions ok,g) space Where the left we show the amplitu%e of the dark-fi?ald componjent|, and at
two solitons are well separated. One should note first that L SrA
when the soliton directions coincide, we can form a boun 'ght |%’(|)' In (a)ov;e Sho;; a g%r;era:] Co.l“S'OE ";) Wh.lcal_hOJ’
state, in which the solitons never separate. We will return tq, (t,)airje ' sZiitills z e myirforo V\ilrl::g;ese Oiat;gepaig?hn;r
this bound state later on. Let us talig>b, so that soliton 1 a,=a,=0.7 andb,=—b,=0.3. In (c) we show a bound mode

crosses soliton “2 from left to right asincreases. "1 accor-  where the two solitons are coincident and almost equal in contrast,
dance with the “nonlinear superposition principle,” one ex- giving rise to very strong beating effecta;=0.7, a,=0.77, and
pects no change after the crossing, except for a small dig;,=p,=0.

placement of the center of each soliton. Using simple

asymptotics, we obtain these displacements from(E#j7),  and therefore there is no change of the polarization state. For
symmetric collisions such as in Fig(bj there is no beating,

) (17) since all components share the same propagation constant.

Unlike the focusing solitons of the Manakov system, the
initial position of dark-bright solitons does not play a signifi-

in which thex’s are the complex soliton eigenvalues definedcant role. Consequently the geneNsoliton solution is a

askj=a;+ib;. Like most solitons, the dark-bright solitons straightforward generalization of the two soliton interaction

are displaced most when the soliton eigenvalues nearly caand can be found using the Hirota method and is presented in

incide. The main difference between this result and thesec. 2 of the Appendix, EqA18).

equivalent result for arbitrarily polarized bright solitofis Asymptotics reveal the total position shift suffered by a

focusing mediais that there is no equivalent of the “polar- soliton experiencing many collisions to be simply the sum of

ization rotation” that occurs for bright solitons. This is a the shifts that it would suffer if each collision occurred sepa-

consequence of the nonzero boundary conditions that removately. The interactions therefore commute, like the colli-

one degree of freedom by comparison with the purely brighkions of scalar solitons, and unlike vector bright soliton in-

Manakov solitons. teractions.

Figure 1a) shows the collision between two solitons of

different directions and contrast. Longitudinal and transverse |, BOUND MODES AND STATIONARY STATES

beating, invariably absent in collisions between scalar dark

solitons, is clearly visible. Note that the amount of energy Since these solitons possess both bright and dark compo-

carried in the bound mode is an invariant of the equationspents, one may expect them to exhibit a mixture of effects

60

Z0r

Ax. = 1
Xl—a_l

2
K1— Ko || ToT K1K2

kit k3 || T5— Kk1K3
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normally associated with bright and dark solitons. In Fig.
7(a), one observes beating in the interaction between dark-
bright solitons. We are accustomed to observing beating only
in the interaction of bright solitons. Another phenomenon
usually restricted to bright solitons is the existence of bound 20}
modes, or breather states. These solutions are special case
of N solitons in which each soliton travels in the same direc-
tion. The superposition of nonlinear modes results in a beat-
ing effect so that breathers of two solitons are periodic in z g}
z, as shown in Fig. (€). Higher-order breather states are
quasiperiodic if the soliton amplitudes are not commensu-
rate. Figure 8 shows an example of a three-soliton breather
of noncommensurate eigenvalues that is consequently quasi-
periodic. i
Breather states are not strictly stable, since there is no
binding energy between the constituent solitons. This is a
property of all breather-type solutions in the integrable scalar
NLS equation, and can be illustrated by considering the evo- 10 0
lution of a minutely perturbed breather state. If the perturba- X
tion is asymmetric, then the velocities of the superposed soli-
tons are no longer exactly equal, and therefore the solitongri
are no longer traveling perfectly in parallel. After enough
distance the solitons will inevitably go their separate ways.

The general expression for the bound state between tw . . oo
dark-bright solitons can be found by rewriting EGh17), %e total beam intensity along the direction of tra\23,24.

with the imaginary parts of the soliton eigenvalues and These stationary stqtes exist W.hen' the two solito_ns are given
«, equal (in other words, by making equal the propagationorthogonal pol§r|zat|ons. Happily, it is also pos&ble to sup-
directionsb, andb,). In general, the bound states are asym-Press the beating between dark-bright solitons by making
metric, since there are no solutions with equal eigenvalue$n€ of the solitons completely dark. The resultant family is
and the solitons are not coincident. If, however, the solitongompletely analogous to the bright case, except that there is
are coincident, then the bound modes are symmetric in than additional degree of freedom: the “greyness,” or direc-
dark component but antisymmetric in the bright part. All tion of travel relative to the background wave. One arrives at
these properties are shared with bright soliton breathers dhe formula for this by setting@r bfzfz, and setting the
the Manakov model. soliton directionsh; andb, equal. Note that, for simplicity,

Bright Manakov solitons exhibit a special type of boundwe have also set=0 andr=1. We can then write, for the
state that is completely stationary—i.e., there is no change idark component,

20

10

10 -10 0
X
FIG. 8. A quasiperiodic interaction of three coincident dark-

ght solitons, each one with the same position and direction, but
each with different contrast, defined by=0.6, 0.4, and 0.2.

o izti(d1t ) cost{éy+igy+Ertigy) —QcoshE+id;—E—idy)

& CosTi ;1 £,) + QcosiiE; — &) ’ 18
|
and, for the bright component, the solitons will be without a bright component altogether.
This situation is shown in Fig.(B). If the positions exactly
2a14ay) ... 2 coincide then the solution is symmetric, and, égr<ay, the
=———— e/ (P27 solitons are indistinguishable, as shown in Figc)9 Con-
v1+ba; versely, asa,—a;, the solution evolves to two individual
. and identical dark-bright solitons with bright components out
% sinh¢, (19) of phase with each oth¢Fig. 9(d)]. Quantitatively speaking,
cosh§,+ &) +Q coshié;—§,) in the limit a,—a,;(1—€), the separation between the two

solitons is (14,)In(2/e), and the amplitude of each of the
where §&=aj(x—Ax;—bz) for j=1 and 2, bright components i§2e cosp, showing that, for well sepa-

O =(a;+ay)/(a;—ay), and ¢j=arctanb/a;) gives a mea- rated solitons, the solitons are almost dark. It is not possible
sure of the greyness of each soliton. to form higher-order stationary states since only one of the
If the solitons almost coincide, then, as shown in Fig.parallel solitons can be totally darnultisoliton solutions

9(a), they form a closely knit bound state, while if the soliton exist only for nondegenerate eigenvalyesd the remaining
positions are very different then each one propagates in isaark-bright solitons must beat against each other.

lation, and takes more or less the same profile that they The stationary states are also important, purely on account
would if the other were not there—which means that one obf their static nature. The remainder of the multisoliton fam-
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FIG. 9. The profiles of some stationary bound states of Manakov (b)
dark-bright solitons. Irfa) and(b) we show stationary states formed
from solitons that are parallel rather than coincident, resulting in
bound states are asymmetric.(5) and (d) the solitons are coinci-
dent and the states are symmetric.(th the solitons eigenvalues . .
almost coincide and we observe the formation of two individual, 1 !
almost completely dark, solitons, as described in the text. The pa- ‘ b
rameters, from Eq(19), are, for each imageh=0, a,=1, and
Ax;=—AX,; specifically, in(a) a,=0.6, Ax=0.8; (b) a,=0.8,
Ax=2.6; (c) a,=0.55,Ax=0.0; and(d) a,=0.99,Ax=0.0;

[\8)
\\

ily describes highly dynamic solutions such as perfectly elas-
tic collisions or radiationless breather states: striking phe- ] _ )
nomena that are unfortunately confined to integrable models. FIG. 10. The relationship between dark-dark Manakov solitons
Conversely, the lack of dynamics exhibited by the Stationar)fm_d the dark-dark solitary waves in systems exhibiting nonlinear

states means that one would expect them to generalize afgiSOtroPy- We show the existence domainsarbj space, and as
be found in nonintegrable systems. a function of the material parametetr The dashed curves indicate

modulational instability of the solitary waves’ backgrounds for
o>1. In (a) the backgrounds are quite closely aligned:=1,

V. DARK SOLITARY WAVES r.=42, andc,=—c_=0.5, while in(b) they are as for Fig. ®):
AND NONLINEAR ANISOTROPY c,.=—c_=1.3. Note that it is not yet clear whether there exists a

A more general model for an isotropic medium generaI-WIOIer class of solutions foor#1.

izes the nonlinear coupling to include a nonlinear anisotropyd k-dark dd . I \uti i
We characterize this anisotropy with the parameterand  9@/<-dar [E% aré ngam-wa —typeblso unon&lﬂ. Bew;}g g
write the propagation equations in the form nonintegrable, q_( ) is not amenable to analytic methods
such as that of Hirota.
Je. 1 d%. First, we discuss the dark-dark solitary waves. Analytical
i—+ - —> —(|e+|?+ gle=|?e.=0. (200  solutions have been found using an ansatz mefpdrhese
0z 2 X . . o
solutions are both an extension and a restriction of those

Note that we have broken the symmetry possessed by thpPlutions we presented in E(LO). They are more general,
Manakov model, and the polarization components can ng'Nce they extend these solut|0n_s into t_he domaln of nonin-
longer be chosen arbitrarilg. represents the field strength t€9rable models but more restricted since they impose an
in counter-rotating circular polarizations. More precisely, 2dditional constraint
ei=(ex_iiey)/\/§, if e, ande, represent _the decomposition ) i
of the field along thex andy axes. Physically the effect of 75coS¢, =12 c0SP_. (21)
o is that each component now suffers a different refractive
index change. The classical values @ofare 1,% and 2, Figure 10 shows the relationship between these two solution
although numerous values have been suggested by a larfgmilies for two different background fields. In fact, the
number of theoretical and experimental studies. Ferl background plane waves of these structures become unstable
this equation fails the Painléviategrability test[25], and  for o>1 due to the effect of polarization modulational in-
therefore does not support the propagation of true mathstability [28,27]. We indicate this in the figure by rendering
ematical solitons. As a consequence, the solitary waves th#ite solitary waves on the unstable backgrounds with a
one finds foro# 1 will change and radiate energy in inter- dashed line. General questions of stability of the dark-dark
action with other solitary waves. solitons are not dealt with in this work, however.

This section will summarize and describe the results of For these algebraically expressed dark-dark solitary
previous studies of the dark solitary waves of E2f)). These  waves, both components of the field suffer the same refrac-
investigations have located a variety of dark-brigR6], tive index change
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les?+ale_[?=ole,|*+]e_|% (22

For the Manakov model, i.e., far=1, this is trivially satis-
fied, but with a nonlinear anisotropy this represents a strong
restriction. One could try to relax this condition by using
analytical-numerical methods to find a more general class of
solitary waves. We write the field in the form

e.(x,z)=f.(x)e?=X gh=2 (23

in which f.. and ¢.. are real functions. Substitution of this
into Eq.(20) leads to real ordinary differential equations that 0
can easily be treated numerically as a one-dimensional
boundary value problem. This study has not yet been carried
out, and it is not apparent to the authors whether or not the
solution set of dark-dark solitary waves can be extended. FIG. 11. Domain of existence of the black-bright<0) soli-
Much more is known and can be stated about the darktary waves in nonintegrable media. The lower bound on the domain
bright solitary waves. The reason for this is that in lineariz-is defined by_ the bifurcat_ion point, at which the energy in the bound
ing about a scalar dark soliton ef. , one can find bifurca- component is zero, Whlle the upper bound either repr(_esents the
tion points at which the fielé_ is the linear mode localized 9'¢Y'"9 out of the solitorion the line=c), or the formation of
by the refractive index change causedday. The existence two infinitely separated domain wallsheres=6..).

of a simple bound mode is guaranteed for any positive value . L . »
of the parameter. By proposing the stationary ansatz paving the way for surprising phenomena. Unlike traditional
dark solitons, these solitons can attract one other and form

e, (x,2)=f,(x)e?Mef+2 e _(x,2)=f_(x)e'F-Z, (24) bound modes, of which, exactly paralleling bright solitons,
there is a family of stationary states.
then solving the resultant ordinary differential equations nu- Interlaced with the analytic results, we also discussed the
merically, one can find broad families of dark-bright solitary possible consequences of our findings for more general non-
waves that are not susceptible to polarization modulationantegrable models. Also incorporating the findings of previ-
instability since the background is a pure circular polariza-ous studies, our work suggests that, as far as much of the
tion state. This general dark-bright analysis awaits complephenomena presented here is concerned, the integrable sys-
tion, although Ref[26] used this approach on coupled non-tem is a representative example of a wider class of models.
linear Schrdinger equations with opposite dispersions.Of particular interest is the expectation that dark-bright soli-
Other works considered primarily the black-brigtite.,  tons would exhibit attractive and repulsive interactions, and
¢»=0) solitary waves(24) [9]. For this case one finds, by form bound states in a variety of media.
analyzing the case of infinitesimal power in the component

e, that there are bifurcation points on the line AppENDIX: SOLUTION OF THE HIROTA EQUATIONS

0 1 2 o

B_(2B_+1)=0c. Consequently one expects dark-bright FOR DARK-BRIGHT SOLITONS
solitary waves above this line. In addition, consideration of ) _ _
the mechanical analog of the differential equation sydiem 1. Single dark-bright solitons

allows us to foresee that the contrast will drop to zero on the sypstitution of the quadratic ansatz Ef3) into the Hi-
line B_=o, bounding the domain from above. A further rota equations, Eq8), and equating coefficients of powers

constraint is thag_ must remain smaller thafl, , since the  of \, leads to the following series of equations:
eigenvalue of the fundamental mode_{ is always smaller

than that of the first modee(,). It has been shown that in A%  Bi(go-1)=0, By(1-1)=—|go|?, (A1)
this limit 8_— B, , the solitary wave evolves into a state of
two infinitely separated domain wall®]. The domain of A By(hy-1)=0, (A2)

existence defined by these constraints is shown in Fig. 11.
A% Bi(QoPz- 1+go-f2)=0,

VI. CONCLUSIONS (A3)
This paper explored the properties of dark-type Manakov Ba(fo- 1+1-f5)=—[gol*(g5 +92),
solitons of nonuniform polarization. We found that they can
be divided into two categories, that we label simply dark- \3: B, (h;-f,)=0, (A4)

dark and dark-bright solitons.

The dark-dark solitons represent an interesting vector . 4.
generalization of the scalar dark soliton. The interplay be-
tween the two overlapping background fields affects the soli- i )
ton’s profile and existence in a complex manner. The darkWe resolve this by starting at the lowest orders. At the zeroth
bright solitons are a more obvious generalization of scalaPrder we find the solution fog, to be
solitons. The bright component has the effect of reducing the
soliton’s contrast, but also of adding a degree of freedom, go= el il W2 xz (AB)

B1(9od2- f2)=0, Ba(fy-f2)=—[geg2l%  (A5)
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where 2= y. Proceeding to the first order, we follow the 2 2 )
standard path in the Hirota method by choosing a single Ze”H-Z ij,lLlj/.szeﬂ1+771+nj
exponential forh; of the form = =1

=

e_= 2 y (A16)
h1=e”, (A?) 1+ 2 Mjke”i+”:+fge”1+’7*1r+”2+”;
ik=1
where 7= kx+i(3k’— )z and k=a+bi is the complex
eigenvalue. Note that, owing to the translational symmetry ofvhere
the propagation equation§; is defined only up to a multi- 5 1
plicative constant. At the second order, _ %12 | 7ol
Mik=| (kj+ ki) pp*_l '
* Pk
fo=pe” ", (A8)
+o* _ |TO|2
92=—(plp*)ue™ 7, (A9) vik= (i rad| =L (A17)
J

1 fg:ﬂllﬂzﬂ V12M12|2-

wherep=a+i(b—c) and the coefficieni takes the form
T2

(et 1*)? o2~ 1) (A10)  sadly there is no simple way to write this expression down;
please see the discussion in the text on the characterization

This defines the solution; calculations at higher orders revegnd visualization of this expression.

that Eqs.(A5) are satisfied to the fourth power bf A dark- It is also possible to extend this expression so as to de-

bright soliton, then, is of the form scribeN-soliton solutions. The ansatz that one chooses is the
obvious generalization of EA13), which leads to a series

1 [ with three equations at each of th&l2 1 orders of\. The
- p_*Me o ) following prescription is the outcome of this procedure; sub-
e, =7———————e M2z (A1) stitution of it into the Hirota equations confirms that it de-

M:

+ *
1+ue™” scribes the dark-brigh¥-soliton.
e’ 2N 2N
e,—1+ entnt’ (A12) f=> Mj(a)exp >, ajn+ > QA k|,
m j=1 1<j<k '

This solution can also be written in the more convenient

form presented in the main text as E5). g= e

2N 2N
> Mz(a)exl{ > aj(ﬂj+§j)+ls2j<k ajakAj,kﬂv

i=1
) - . (A18)
2. Dark-bright multisoliton solutions
2N 2N
The calculation of this state is a tedious but straightfor- .
ward algebraic exercise. We use the obvious quartic ansatz h=2 M 1(a)ex;{ 12::1 a7+ l;j:<k g akAJ\k) :
— 2 4 — 3

9=00o(1+A"g2+A"0a),  h=Ah;+A7hs, (A13)  where the first sum is over all possible permutations of the
vectora=(a,ay, . .. ,Azn), in which eacha; can be either
0 or 1. The previous definitions for the two-soliton solution
are extended as

f=1+\2f,+\%g,,

and substitute this into the Hirota equations of E8), to
derive the nine relations analogous to EGs5).
The solution to these equations is again found by begin- nien=nr . Len=1p}, efikin=yjk,

ning with the zeroth order. We choose exactly the same form (A19)
again forgg, since the background is not changed. At the eAj_,,N’k:M}kk, Al k= Vi, eAj+N,k+N=VJ*k
first order, we choose
h,=e71+e"2, (A14) and
in which each term describes one soliton. Calculations then N 2N
lead inexorably to the solution 1if Y a= > a
1= =1 j=N+1
2 pj «  P1P2 Lo * " 0 otherwise,
1- > €T Tk f et et (A20)
k=1 Pk P1P2 ip

e,=r7 2 er,

N 2N
1if > a= > a+1
=1

ity o f0an+nt gt
1+_k21 Mjkem T + et et i
J,.K=

=
(A15) 0 otherwise.



4782

[1] A. Hasegawa,Solitons in Optical Fibres(Springer-Verlag,
New York, 1989.
[2] R. De la Fuente, A. Barthelemy, and C. Froehly, Opt. L.
793 (199).
[3] M. Shalaby and A. Barthelemy, Opt. Lett6, 1472(1991).
[4] J. S. Aitchisoret al, Opt. Lett.16, 15 (199J).
[5] Y. S. Kivshar, IEEE J. Quantum Electro®9, 250(1993.
[6] P. Emplitet al., Opt. Commun62, 347 (1987.
[7] B. Luther-Davies and X. Yang, Opt. Lett7, 496 (1992.
[8] Y. S. Kivshar and S. K. Turitsyn, Opt. Lett8, 337 (1993.
[9] M. Haelterman and A. P. Sheppard, Phys. ReW%: 4512
(19949.
[10] R. Radhakrishnan and M. Lakshmanan, J. Phy28A2683
(1995.
[11] R. W. Boyd,Nonlinear Optics(Academic, New York, 1992
[12] D. H. Closeet al,, IEEE J. Quantum Electror2, 553 (1966.

Lightwave. Technol10, 28 (1992.

[14] P. K. A. Wai and C. R. Menyuk, IEEE J. Lightwave. Technol.

14, 148(1996.

ADRIAN P. SHEPPARD AND YURI S. KIVSHAR 55

[17] S. V. Manakov, Zh. Eksp. Teor. Fi£5, 505 (1973 [Sov.
Phys. JETF38, 248(1974)].

[18] A. C. Newell and J. V. MoloneyiNonlinear Optics(Addison-
Wesley, Redwood City, CA, 1992

[19] A. Villeneuve, J. U. Kang, and G. I. Stegeman, Appl. Phys.

Lett. 67, 760(1995.

[20] V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. 6. 118
(1971 [Sov. Phys. JETR4, 62 (1972].

[21] V. E. Zakharov and A. B. Shabat, Zhk&p. Teor. Fiz.64,
1627(1973 [Sov. Phys. JETR7, 823(1973].

[22] R. Hirota, Phys. Rev. LetR7, 1192(1972.

[23] D. N. Christodoulides and R. I. Joseph, Opt. Let8 53
(1988.

[24] M. V. Tratnik and J. E. Sipe, Phys. Rev. 38, 2011(1988.

) [25] R. Sahadevan, K. M. Tamizhmani, and M. Lakshmanan, J.
[13] S. G. Evangelides, L. F. Mollenauer, and J. P. Gordon, IEEE J.

Phys. A19, 1783(1986.

[26] A. V. Buryak, Y. S. Kivshar, and D. F. Parker, Phys. Lett. A

215, 57 (1998.

[15] J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. N. Akhme-[27] M- Haelterman and A. P. Sheppard, Phys. Rew&: 3376

diev, Phys. Rev. Let{76, 3699(1996.
[16] J. U. Kang, G. I. Stegeman, and J. S. Aitchison, Opt. L.
189(1996.

(1994.
[28] A. L. Berkhoer and V. E. Zakharov, Zh. Eksp. Teor. F&8,
903 (1970 [Sov. Phys. JETB1, 486 (1970].



