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Polarized dark solitons in isotropic Kerr media
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We characterize dark-type vector optical solitons of arbitrary polarization in isotropic, Kerr-type media by
applying Hirota’s method to the integrable Manakov model with a defocusing nonlinearity. We find that
nonuniformly polarized solitons comprise a rich solution family that can be divided into two categories:
dark-dark and dark-bright vector solitons. We consider the propagation dynamics and the interactions of these
vector solitons by deriving multisoliton solutions, and show the existence of stationary bound states, a phe-
nomenon not observed for scalar dark solitons.@S1063-651X~97!10404-4#

PACS number~s!: 42.65.Tg, 42.81.Dp, 03.40.Kf
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I. INTRODUCTION

The theory of solitons and solitary waves has turned
to be relevant to a variety of different physical process
However, it is in the field of guided wave optics that solito
have made the greatest experimental impact. Optical fi
transmission systems have been realized using tempo
confined solitons propagating as pulses in one dimension@1#.
More futuristically, nonlinear switches that rely on the inte
action between spatially confined solitons are being inve
gated in a variety of media@2–4#. Solitons on a background
field, also known as dark solitons, typically appear as loc
ized intensity dips on a finite carrier wave@5#, and, like their
bright counterparts, have been observed in fibers@6# and
waveguides@7#. They are generally more robust than brig
solitons, and have been the object of recent research co
ering the influence of polarization@8–10#.

In general, the nonlinear response of isotropic mater
can be anisotropic, as can be seen from a phenomenolo
analysis of the symmetries of the higher-order susceptib
tensorsx (n) @11#. However, in the simplest model of a non
linear medium, one assumes that the medium is comple
characterized by a refractive index change which depe
only on the total intensity. This model is valid for electr
strictive media, and materials in which the nonlinearity
slightly nonlocal in either space or time@12#. Many liquids
and gases fall into this category. It has also been shown,
numerically@13# and now analytically@14#, that the anisot-
ropy induced in silica fibers averages to zero over lo
propagation distances on account of stochastic variation
the fiber characteristics. More concretely, recent spatial s
ton experiments@15,16# have shown that AlxGa12xAs semi-
conductors, operated at the half-band-gap, can also be
tirely isotropic at the nonlinear level.

Studying the propagation of quasimonochroma
paraxial light beams, and considering only an isotropic thi
order ~Kerr! nonlinear response, one may derive the Ma
kov model for paraxial light beams in diffractive media@17#,
including semiconductors operated at the half-band-gap@19#,
and for wave packets in dispersive optical fibers@18,14#. The
551063-651X/97/55~4!/4773~10!/$10.00
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Manakov equation is a vector nonlinear Schro¨dinger ~NLS!
equation possessing the symmetry of the second uni
@U(2)# group, and was shown by Manakov@17# to be inte-
grable. He integrated it by extending the method of the
verse scattering transform~IST!, that had already been use
to integrate the Korteweg–de Vries equation and the sc
@U(1)# NLS equation@20#. This enabled him to characteriz
the interaction between two bright solitons of arbitrary p
larization. The spectral problem associated with the Ma
kov equation is 333, and analytical investigation tends to b
frustrated by algebraic complexity which is exacerbated
the noncommutativity of the underlyingU(2) symmetry
group. There was, until recently, little addition to the origin
work of Manakov.

While the scalar nonlinear Schro¨dinger equation was
solved many years ago for nonzero boundary conditi
@21#, no such work has been completed for the Manak
equation. Perhaps researchers believed that the constr
imposed by the nonzero background field would reduce i
a simple generalization of the scalar NLS equation. In a
case application of the IST to the Manakov equation w
nonzero boundary conditions is no small task, involving t
study of three-sheet Riemann surfaces. Recently@10#, the
Hirota method was applied to the Manakov equation a
more straightforward way of deriving explicit bright an
dark N-soliton solutions. Unfortunately, owing to an ove
sight, the authors find solutions that are apparently o
trivial generalizations of solutions to the scalar NLS equ
tion.

This work examines particularly the dark solitons that o
finds in systems described by the Manakov model with
defocusing nonlinearity. Considering the field to be co
posed of two orthogonally polarized field components, th
are two possible ways to generalize a scalar dark sol
formed in one component only. The second field compon
may also form a kink structure, or it may be localized in t
region of the dark soliton. These two classes turn out to
fundamentally different. This study will characterize the
individual solitons, then use the Hirota method to search
the multisoliton solutions which describe elastic soliton
4773 © 1997 The American Physical Society
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4774 55ADRIAN P. SHEPPARD AND YURI S. KIVSHAR
teractions in the absence of radiative components. The ty
of solutions one obtains from an analytical study of this s
are constrained by the infinity of conservation laws p
sessed by all the soliton equations. One can predict in
vance the usual soliton properties: solitons survive all co
sions with their amplitude and direction intact, but m
suffer changes in their position and phase. In this paper
will highlight particularly the less evident effects of the in
terplay between the polarization components.

II. HIROTA’S METHOD AND DARK-TYPE
MANAKOV SOLITONS

A. General formalism

The Manakov model for describing the~111!-
dimensional stationary propagation of light of arbitrary p
larization in defocussing media leads to theU(2) nonlinear
Schrödinger ~NLS! equation@17,14,19#

i
]e

]z
1
1

2

]2e

]x2
2ueu2e50, ~1!

wherex andz are the transverse and longitudinal coordina
respectively, ande(x,z) is a two-component vector describ
ing transversely polarized light. It is easiest to decompose
into orthogonal polarization components; we choose the
belse1(x,z) ande2(x,z) as the envelopes of two arbitrar
but orthogonal polarizations, in which Eq.~1! reads

i
]e6

]z
1
1

2

]2e6

]x2
2~ ue1u21ue2u2!e650 ~2!

If we confine the light to a single polarization state, s
e1 , then the problem reduces to theU(1) NLS equation that
possesses as soliton solutions the family of dark solito
The most general expression for the dark soliton is

e15t$ isinf1cosf tanh@a~x2bz!#%eicx1 i [c2/21t2]z. ~3!

The dark soliton induces a corresponding change of the
dium refractive index change which is proportional to t
total field intensity

Dn25ueu25t22a2 sech2@a~x2bz!#, ~4!

where f5arctan@(c2b)/a#, and the soliton parameters a
connected by the constrainta21(c2b)25t2, otherwise
written asa56t cosf. The soliton therefore exists in th
domainc2t,b,c1t. It describes a localized kink struc
ture on a background plane wave;t gives the amplitude of
the background, whilec gives its direction. Across the soli
ton, there is a phase jump in the background wave
p22f, topologically trapping the soliton. The contrast
the soliton, defined as the ratio between the maximum
minimum intensities, is given by cos2f. Note that after hav-
ing defined the background field~by fixing t and c), the
soliton is characterized completely by the single param
b; the width, contrast, and phase jump are all defined by
For b5c, we have a black soliton of unity contrast, and
p phase shift traveling parallel to the background wa
while, asb→c6t ~or f→p/2), the soliton contrast and th
phase shift both drop to zero.
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When considering solitons of nonuniform polarizatio
and thereby introducing the field componente2 , one has the
option to either localizee2 by restricting its intensity to zero
for x→6`, or leave it delocalized with any finite intensit
at infinity. We shall see in the course of this paper that th
two cases are fundamentally different. The unrestricted c
leads to more traditional vector dark solitons of the type t
were considered in@8# and@10#, in which there is an intensity
dip in both polarization components at the center of the s
ton. We call these dark-dark solitons, since both compone
describe a dark-type mode. Localizing the field leads to da
bright solitons, first investigated in@9#, in which thee2 com-
ponent is a bright localized mode confined by the presenc
the other component.

To characterize these Manakov dark solitons, we ap
the method of Hirota@22#, and first transform Eq.~2! into a
bilinear form. We do this by introducing the Hirota function
f (x,z), g(x,z), andh(x,z), such that

e15g/ f and e25h/ f . ~5!

There is no loss of generality in assumingf to be real. Ex-
pressing the Manakov equations in terms off , g, andh is
simplified by making use of the Hirota bilinear operator

Dx
mDz

n~ f •g!5~]x2]x8!m~]z2]z8!n

3@ f ~x,z!g~x8,z8!#ux5x8,z5z8. ~6!

The Manakov equation can now be written in the simp
forms

B1~g• f !50, B1~h• f !50, ~7!

B2~ f • f !52ugu22uhu2, ~8!

whereB1 andB2 are bilinear operators defined by

B15 iD z1
1
2 Dx

22x, B25
1
2 Dx

22x.

Following @10#, we introduce the parameterx, necessary for
the search for dark solitons. Considering plane-wave so
tions of the forme65e6

o eik6•r leads to the identityue1
o u2

1ue2
o u25x, which shows thatx, which must be real, dictate

the total intensity of the background field.
Once an equation has been written in a bilinear for

Hirota’s method proceeds by assuming that each Hir
function can be written as a polynomial function of an ar
trary parameterl. The theoretical basis for this approach
still not well understood. Nevertheless, it is clear that t
Hirota method provides a convenient prescription for findi
closed-form analytical solutions to many, if not all, of th
soliton equations.

B. Dark-dark solitons

Our initial task is to find individual, static, dark-dark sol
tons. To do this we introduce an ansatz normally used
finding topological solitons:

g5g0~11l2g2!,

h5h0~11l2h2! and f511l2f 2. ~9!
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We substitute Eqs.~9! into Eqs.~8!, then equate powers o
the arbitrary parameterl. There will be three equations a
each of the zeroth, second, and fourth powers inl. If we can
satisfy all these equations, then we will have found a clos
form solution to the problem. In practice, the last half of t
equations are redundant—a correct solution will be defi
completely by the identities up to the second power inl.
One may solve these equations by considering one order
time, commencing at the zeroth order. Following this pro
dure results in a ‘‘dark-dark’’ vector soliton of the followin
form:

e65t6$ i sinf61cosf6tanh@a~x2bz!#%

3eic6x1 i [c6
2 /21x]z, ~10!

with f65arctan@(c62b)/a#. The soliton parameters are co
nected by the identity

a25t1
2 cos2f11t2

2 cos2f2 . ~11!

This is an implicit identity, sincef1 andf2 each depend on
a. The intensity is the same form as for the scalar soliton

ueu25t22a2sech2@a~x2bz!# ~12!

FIG. 1. The single dark-dark soliton in (b,a) space. The soliton
exists on the curves defined by Eq.~13!, presented here for thre
different background fields. The backgrounds ine1 ande2 become
more closely aligned in descending from~a! to ~c!. In ~a!, ~b!, and
~c!, t151.0, t25A2, andc152c25c. ~a! c51.8, ~b! c51.3,
and ~c! c50.6. The points labeledA, B, etc. correspond to the
solitons shown in Fig. 2.
d-

d

t a
-

The background field on which these solitons repose m
be thought of as two superposed plane waves whose inte
and direction of travel can be independently chosen. Sp
fying the background field leaves us with onlyonedegree of
freedom for the soliton itself, as for the scalar dark solito
We use the soliton directionb as the independent variable
the soliton width~defined by 1/a), and the soliton ‘‘grey-
ness’’ parametersf1 and f2 are then uniquely defined
through Eq.~11!.

We illustrate the characteristics of this soliton with the a
of Figs. 1, 2, and 3. In Fig. 1 we show the soliton’s doma
of existence in (b,a) space, for several different examples
background fields. Remember that 1/a defines the soliton
width, and arctanb is the propagation angle relative to thez
axis. Therefore at the right of each plot we find th
rightwards-moving solitons and, at the left, leftwards movi
ones. Figure 1~a! illustrates a case of highly disparate bac
ground fields~i.e., in whichc1 is very different fromc2),
and dark-dark solitons are found that approximately follo
each field direction, i.e., roughly in the rangec6

2t6<b<c61t6 . Note that at the pointsb5c6 the con-
trast in the fielde6 is unity—the soliton is ‘‘black’’ in that

FIG. 2. Some examples of the intensity profiles of the sin
dark-dark soliton, taken from the previous figure.A: b520.7.B:
b52.0.C: b522.7.D: b520.8. It is clear that this is a rich and
varied family of solutions.

FIG. 3. The phase dependence of the two components
single dark-dark soliton, here the caseD from Figs. 1 and 2. The
componente1 is shown at left,e2 at right. The soliton is propa-
gating up the page and is clearly shown to be a dark soliton pro
gating across two different superimposed background fields.
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4776 55ADRIAN P. SHEPPARD AND YURI S. KIVSHAR
component~although the total contrast will be less tha
unity!. For widely disparate backgrounds the existence cr
rion Eq. ~11! reduces toa.6t6cosf6 , i.e., the fields de-
couple from each other. A good example of this is shown
Fig. 2(C), where the soliton component ine2 is influenced
only minimally by the other fielde1 whose profile is almos
constant. In the opposite limit of closely aligned fiel
c1→c2→c the solitons describe scalar dark solitons who
parameters are connected through the identitya21(b2c)2

5t1
2 1t2

2 .

C. Dark-bright solitons

We now turn our attention to the dark-bright solitons
which the field componente2 is localized by the waveguide
induced bye1 . To find individual, static, dark-bright soli
tons we introduce, forh, an ansatz typically regarded a
suitable for bright solitons, and one forg appropriate for
kinks:

g5g0~11l2g2!, h5lh1 and f511l2f 2. ~13!

On substituting this into the Hirota equations~8!, and follow-
ing the same procedure as above~see Sec. I of the Appen
dix!, one derives the dark-bright soliton

e15t$ i sinf1cosf tanh@a~x2bz!#%eicx1 i [c2/21t2]z, ~14!

e25At2cos2f2a2 sech@a~x2bz!#eibx1 i [ ~a22b2!/22t2]z,
~15!

wheref, as before, is defined byf5arctan@(c2b)/a#, and
the solution is valid only when the inequalitya2

1(c2b)2<t2— or a2<t2cos2f2— is satisfied. When this
constraint is satisfied as an equality, the intensity ine2 is
zero, and the scalar dark soliton is recovered. The repl
ment of a strict equality by an inequality adds a degree
freedom to the system—a andb can now be chosen inde
pendently. This additional degree of freedom ordains
dark-bright soliton with some interesting properties. T
dark component takes the dark soliton profile, but, as co
pared to the dark soliton, the contrast at a given propaga
angle is reduced by the antiguiding bright component. C
trary to the dark-dark soliton, in this case the two fields wo
against one another to the point that the nonlinear cha
induced bye1 can be canceled by the nonlinear change
e2 . The total intensity is again the same,

ueu25t22a2 sech2@a~x2bz!#. ~16!

Figure 4 shows the existence domain of the dark-bright s
tons, as defined by the constrainta21(c2b)2<t2. On the
perimeter of this domain are the scalar dark solitons. N
that the dark-dark solitons exist only outside this domain—
the regiona21(c2b)2>t2. This reflects the fact that th
additional dark component adds to the refractive ind
change while the localized ‘‘bright’’ component reduces
One can view the scalar dark soliton as the common gro
between the dark-dark and the dark-bright solitons. On
center lineb5c, the black-bright solitons are found, whil
-
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near theb axis we find the low contrast, broad solitons f
which the width goes to infinity (a→0) and the contrast to
zero.

At the top left of Fig. 5 we show how the power in eac
field component varies, as we traverse the range of value
a for various fixedb. Notice that a scalar soliton of low
contrast ~i.e., very grey, traveling across the backgrou
wave! can only support a small amount of power in th
bright component before its width goes to infinity and co
trast to zero. At the other end of the scale, a black-bri
soliton ~i.e., b5c) can ultimately support an infinite powe
in the guided component when its width goes to infinity. T
remainder of Fig. 5 shows the profiles of three different da
bright solitons, labeledA, B, andC from Fig. 4. In these
examples we witness the degeneration of a dark soliton:

FIG. 4. The domain of existence of the dark-bright solitons
c50.2 and t51. The soliton is found anywhere within th
circle—it is a two parameter family on a given background. On
perimeter the soliton becomes a scalar dark soliton without a br
component. The labeled points and the vertical lines correspon
the examples shown in Fig. 5.

FIG. 5. At the top left we show the dependence ofP2 , the
power in the bright componente2 , on the soliton widtha for
several values of the directionb. The lines here correspond to thos
of the same style from Fig. 4. The rest of the figure shows exam
of dark-bright soliton profiles, with parametersb520.2, and (A)
a50.8, (B) a50.5, and (C) a50.2. Note the antiguiding characte
of the bright component—its effect is to reduce the total guidan
thus ‘‘greying out’’ the soliton.
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creasing the parametera reduces the contrast until the solito
disappears into the background. Figure 6 shows the ph
variation of the propagating soliton of caseA.

III. SOLITON INTERACTIONS

For integrable models one expects to find analytic so
tions not merely for the solitons themselves, but for all t
solutions that characterize their interaction in the absenc
a nonsolitonic, radiative component. We perform this cal
lation only for dark-bright solitons. Finding multisoliton so
lutions is simply a question of taking a breath and extend
the Hirota method to higher orders. Using straightforwa
but messy algebra, as described in Sec. 2 of the Appen
one derives the two-soliton expression of Eq.~A17!. The
analytical formula is not very informative of itself, and w
must resort to asymptotics and numerics to characterize
visualize it. Consider the regions of (x,z) space where the
two solitons are well separated. One should note first
when the soliton directions coincide, we can form a bou
state, in which the solitons never separate. We will return
this bound state later on. Let us takeb1.b2 so that soliton 1
crosses soliton 2 from left to right asz increases. In accor
dance with the ‘‘nonlinear superposition principle,’’ one e
pects no change after the crossing, except for a small
placement of the center of each soliton. Using sim
asymptotics, we obtain these displacements from Eq.~A17!,

Dx15
1

a1
S U k12k2

k11k2*
UU t0

21k1k2

t0
22k1k2*

U D , ~17!

in which thek ’s are the complex soliton eigenvalues defin
ask j5aj1 ib j . Like most solitons, the dark-bright soliton
are displaced most when the soliton eigenvalues nearly
incide. The main difference between this result and
equivalent result for arbitrarily polarized bright solitons~in
focusing media! is that there is no equivalent of the ‘‘pola
ization rotation’’ that occurs for bright solitons. This is
consequence of the nonzero boundary conditions that rem
one degree of freedom by comparison with the purely bri
Manakov solitons.

Figure 7~a! shows the collision between two solitons
different directions and contrast. Longitudinal and transve
beating, invariably absent in collisions between scalar d
solitons, is clearly visible. Note that the amount of ener
carried in the bound mode is an invariant of the equatio

FIG. 6. The phase dependence of a dark-bright soliton. The d
componente1 is at left, the bright componente2 at right. It is most
apparent in this figure that the componente2 is following the wave-
guide induced for it bye1 .
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and therefore there is no change of the polarization state.
symmetric collisions such as in Fig. 7~b! there is no beating,
since all components share the same propagation consta

Unlike the focusing solitons of the Manakov system, t
initial position of dark-bright solitons does not play a signi
cant role. Consequently the generalN-soliton solution is a
straightforward generalization of the two soliton interacti
and can be found using the Hirota method and is presente
Sec. 2 of the Appendix, Eq.~A18!.

Asymptotics reveal the total position shift suffered by
soliton experiencing many collisions to be simply the sum
the shifts that it would suffer if each collision occurred sep
rately. The interactions therefore commute, like the co
sions of scalar solitons, and unlike vector bright soliton
teractions.

IV. BOUND MODES AND STATIONARY STATES

Since these solitons possess both bright and dark com
nents, one may expect them to exhibit a mixture of effe

rk

FIG. 7. Three examples of dark-bright soliton interactions.
left we show the amplitude of the dark-field componentue1u, and at
right ue2u. In ~a! we show a general collision in whicha150.7,
b1520.01, a250.97, andb250.03, showing the beating phenom
ena. In ~b! the solitons are mirror images of one anothe
a15a250.7 andb152b250.3. In ~c! we show a bound mode
where the two solitons are coincident and almost equal in contr
giving rise to very strong beating effects:a150.7, a250.77, and
b15b250.
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4778 55ADRIAN P. SHEPPARD AND YURI S. KIVSHAR
normally associated with bright and dark solitons. In F
7~a!, one observes beating in the interaction between d
bright solitons. We are accustomed to observing beating o
in the interaction of bright solitons. Another phenomen
usually restricted to bright solitons is the existence of bou
modes, or breather states. These solutions are special
of N solitons in which each soliton travels in the same dir
tion. The superposition of nonlinear modes results in a b
ing effect so that breathers of two solitons are periodic
z, as shown in Fig. 7~c!. Higher-order breather states a
quasiperiodic if the soliton amplitudes are not commen
rate. Figure 8 shows an example of a three-soliton brea
of noncommensurate eigenvalues that is consequently q
periodic.

Breather states are not strictly stable, since there is
binding energy between the constituent solitons. This i
property of all breather-type solutions in the integrable sca
NLS equation, and can be illustrated by considering the e
lution of a minutely perturbed breather state. If the pertur
tion is asymmetric, then the velocities of the superposed s
tons are no longer exactly equal, and therefore the solit
are no longer traveling perfectly in parallel. After enou
distance the solitons will inevitably go their separate way

The general expression for the bound state between
dark-bright solitons can be found by rewriting Eq.~A17!,
with the imaginary parts of the soliton eigenvaluesk1 and
k2 equal~in other words, by making equal the propagati
directionsb1 andb2). In general, the bound states are asy
metric, since there are no solutions with equal eigenvalu
and the solitons are not coincident. If, however, the solito
are coincident, then the bound modes are symmetric in
dark component but antisymmetric in the bright part. A
these properties are shared with bright soliton breather
the Manakov model.

Bright Manakov solitons exhibit a special type of bou
state that is completely stationary—i.e., there is no chang
ig
n
is
he
o

.
k-
ly

d
ses
-
t-
n

-
er
si-

o
a
r
o-
-
li-
ns

.
o

-
s,
s
e
l
of

in

the total beam intensity along the direction of travel@23,24#.
These stationary states exist when the two solitons are g
orthogonal polarizations. Happily, it is also possible to su
press the beating between dark-bright solitons by mak
one of the solitons completely dark. The resultant family
completely analogous to the bright case, except that ther
an additional degree of freedom: the ‘‘greyness,’’ or dire
tion of travel relative to the background wave. One arrives
the formula for this by settinga1

21b1
25t2, and setting the

soliton directionsb1 andb2 equal. Note that, for simplicity,
we have also setc50 andt51. We can then write, for the
dark component,

FIG. 8. A quasiperiodic interaction of three coincident dar
bright solitons, each one with the same position and direction,
each with different contrast, defined byaj50.6, 0.4, and 0.2.
e15e2 iz1 i ~f11f2!
cosh~j11 if11j21 if2!2Vcosh~j11 if12j22 if2!

cosh~j11j2!1Vcosh~j12j2!
, ~18!
er.

l
ut
,
o
e
-
ible
the

unt
m-
and, for the bright component,

e25
2~a11a2!

A11b2/a2
2
eibx1~ i /2!~a2

2
2b2!z

3
sinhj1

cosh~j11j2!1V cosh~j12j2!
, ~19!

where j j5aj (x2Dxj2bz) for j51 and 2,
V5(a11a2)/(a12a2), andf j5arctan(b/aj) gives a mea-
sure of the greyness of each soliton.

If the solitons almost coincide, then, as shown in F
9~a!, they form a closely knit bound state, while if the solito
positions are very different then each one propagates in
lation, and takes more or less the same profile that t
would if the other were not there—which means that one
.

o-
y
f

the solitons will be without a bright component altogeth
This situation is shown in Fig. 9~b!. If the positions exactly
coincide then the solution is symmetric, and, fora2!a1, the
solitons are indistinguishable, as shown in Fig. 9~c!. Con-
versely, asa2→a1, the solution evolves to two individua
and identical dark-bright solitons with bright components o
of phase with each other@Fig. 9~d!#. Quantitatively speaking
in the limit a2→a1(12e), the separation between the tw
solitons is (1/a1)ln(2/e), and the amplitude of each of th
bright components isA2e cosf, showing that, for well sepa
rated solitons, the solitons are almost dark. It is not poss
to form higher-order stationary states since only one of
parallel solitons can be totally dark~multisoliton solutions
exist only for nondegenerate eigenvalues!, and the remaining
dark-bright solitons must beat against each other.

The stationary states are also important, purely on acco
of their static nature. The remainder of the multisoliton fa
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ily describes highly dynamic solutions such as perfectly e
tic collisions or radiationless breather states: striking p
nomena that are unfortunately confined to integrable mod
Conversely, the lack of dynamics exhibited by the station
states means that one would expect them to generalize
be found in nonintegrable systems.

V. DARK SOLITARY WAVES
AND NONLINEAR ANISOTROPY

A more general model for an isotropic medium gener
izes the nonlinear coupling to include a nonlinear anisotro
We characterize this anisotropy with the parameters, and
write the propagation equations in the form

i
]e6

]z
1
1

2

]2e6

]x2
2~ ue6u21sue7u2!e650. ~20!

Note that we have broken the symmetry possessed by
Manakov model, and the polarization components can
longer be chosen arbitrarily;e6 represents the field strengt
in counter-rotating circular polarizations. More precise
e65(ex6 iey)/A2, if ex andey represent the decompositio
of the field along thex andy axes. Physically the effect o
s is that each component now suffers a different refract
index change. The classical values ofs are 1, 23, and 2,
although numerous values have been suggested by a
number of theoretical and experimental studies. ForsÞ1
this equation fails the Painleve´ integrability test@25#, and
therefore does not support the propagation of true m
ematical solitons. As a consequence, the solitary waves
one finds forsÞ1 will change and radiate energy in inte
action with other solitary waves.

This section will summarize and describe the results
previous studies of the dark solitary waves of Eq.~20!. These
investigations have located a variety of dark-bright@26#,

FIG. 9. The profiles of some stationary bound states of Mana
dark-bright solitons. In~a! and~b! we show stationary states forme
from solitons that are parallel rather than coincident, resulting
bound states are asymmetric. In~c! and ~d! the solitons are coinci-
dent and the states are symmetric. In~d! the solitons eigenvalue
almost coincide and we observe the formation of two individu
almost completely dark, solitons, as described in the text. The
rameters, from Eq.~19!, are, for each image,b50, a151, and
Dx152Dx2; specifically, in ~a! a250.6, Dx50.8; ~b! a250.8,
Dx52.6; ~c! a250.55,Dx50.0; and~d! a250.99,Dx50.0;
-
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-
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dark-dark @8# and domain-wall-type solutions@27#. Being
nonintegrable, Eq.~20! is not amenable to analytic method
such as that of Hirota.

First, we discuss the dark-dark solitary waves. Analyti
solutions have been found using an ansatz method@8#. These
solutions are both an extension and a restriction of th
solutions we presented in Eq.~10!. They are more genera
since they extend these solutions into the domain of non
tegrable models but more restricted since they impose
additional constraint

t1
2 cos2f15t2

2 cos2f2 . ~21!

Figure 10 shows the relationship between these two solu
families for two different background fields. In fact, th
background plane waves of these structures become uns
for s.1 due to the effect of polarization modulational in
stability @28,27#. We indicate this in the figure by renderin
the solitary waves on the unstable backgrounds with
dashed line. General questions of stability of the dark-d
solitons are not dealt with in this work, however.

For these algebraically expressed dark-dark solit
waves, both components of the field suffer the same ref
tive index change

v

n

,
a-

FIG. 10. The relationship between dark-dark Manakov solito
and the dark-dark solitary waves in systems exhibiting nonlin
anisotropy. We show the existence domains in (a,b) space, and as
a function of the material parameters. The dashed curves indicat
modulational instability of the solitary waves’ backgrounds f
s.1. In ~a! the backgrounds are quite closely aligned:t151,
t15A2, andc152c250.5, while in~b! they are as for Fig. 1~a!:
c152c251.3. Note that it is not yet clear whether there exists
wider class of solutions forsÞ1.
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ue1u21sue2u25sue1u21ue2u2. ~22!

For the Manakov model, i.e., fors51, this is trivially satis-
fied, but with a nonlinear anisotropy this represents a str
restriction. One could try to relax this condition by usin
analytical-numerical methods to find a more general clas
solitary waves. We write the field in the form

e6~x,z!5 f6~x!eif6~x! eib6z, ~23!

in which f6 andf6 are real functions. Substitution of thi
into Eq.~20! leads to real ordinary differential equations th
can easily be treated numerically as a one-dimensio
boundary value problem. This study has not yet been car
out, and it is not apparent to the authors whether or not
solution set of dark-dark solitary waves can be extended

Much more is known and can be stated about the da
bright solitary waves. The reason for this is that in linear
ing about a scalar dark soliton ofe1 , one can find bifurca-
tion points at which the fielde2 is the linear mode localized
by the refractive index change caused bye1 . The existence
of a simple bound mode is guaranteed for any positive va
of the parameters. By proposing the stationary ansatz

e1~x,z!5 f1~x!eif~x!eib1z, e2~x,z!5 f2~x!eib2z, ~24!

then solving the resultant ordinary differential equations
merically, one can find broad families of dark-bright solita
waves that are not susceptible to polarization modulatio
instability since the background is a pure circular polari
tion state. This general dark-bright analysis awaits comp
tion, although Ref.@26# used this approach on coupled no
linear Schro¨dinger equations with opposite dispersion
Other works considered primarily the black-bright~i.e.,
f50) solitary waves~24! @9#. For this case one finds, b
analyzing the case of infinitesimal power in the compon
e2 , that there are bifurcation points on the lin
b2(2b211)5s. Consequently one expects dark-brig
solitary waves above this line. In addition, consideration
the mechanical analog of the differential equation system@9#
allows us to foresee that the contrast will drop to zero on
line b25s, bounding the domain from above. A furthe
constraint is thatb2 must remain smaller thanb1 , since the
eigenvalue of the fundamental mode (e2) is always smaller
than that of the first mode (e1). It has been shown that in
this limit b2→b1 , the solitary wave evolves into a state
two infinitely separated domain walls@9#. The domain of
existence defined by these constraints is shown in Fig. 1

VI. CONCLUSIONS

This paper explored the properties of dark-type Manak
solitons of nonuniform polarization. We found that they c
be divided into two categories, that we label simply da
dark and dark-bright solitons.

The dark-dark solitons represent an interesting vec
generalization of the scalar dark soliton. The interplay
tween the two overlapping background fields affects the s
ton’s profile and existence in a complex manner. The da
bright solitons are a more obvious generalization of sca
solitons. The bright component has the effect of reducing
soliton’s contrast, but also of adding a degree of freedo
g
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paving the way for surprising phenomena. Unlike tradition
dark solitons, these solitons can attract one other and f
bound modes, of which, exactly paralleling bright soliton
there is a family of stationary states.

Interlaced with the analytic results, we also discussed
possible consequences of our findings for more general n
integrable models. Also incorporating the findings of pre
ous studies, our work suggests that, as far as much of
phenomena presented here is concerned, the integrable
tem is a representative example of a wider class of mod
Of particular interest is the expectation that dark-bright so
tons would exhibit attractive and repulsive interactions, a
form bound states in a variety of media.

APPENDIX: SOLUTION OF THE HIROTA EQUATIONS
FOR DARK-BRIGHT SOLITONS

1. Single dark-bright solitons

Substitution of the quadratic ansatz Eq.~13! into the Hi-
rota equations, Eq.~8!, and equating coefficients of power
of l, leads to the following series of equations:

l0: B1~g0•1!50, B2~1•1!52ug0u2, ~A1!

l1: B1~h1•1!50, ~A2!

l2: B1~g0g2•11g0• f 2!50,
~A3!

B2~ f 2•111• f 2!52ug0u2~g2*1g2!,

l3: B1~h1• f 2!50, ~A4!

l4: B1~g0g2• f 2!50, B2~ f 2• f 2!52ug0g2u2. ~A5!

We resolve this by starting at the lowest orders. At the zer
order we find the solution forg0 to be

g05teicx1 i [ ~1/2!c21x]z, ~A6!

FIG. 11. Domain of existence of the black-bright (f50) soli-
tary waves in nonintegrable media. The lower bound on the dom
is defined by the bifurcation point, at which the energy in the bou
component is zero, while the upper bound either represents
greying out of the soliton~on the lineb5s), or the formation of
two infinitely separated domain walls~whereb25b1).
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where t25x. Proceeding to the first order, we follow th
standard path in the Hirota method by choosing a sin
exponential forh1 of the form

h15eh, ~A7!

whereh5kx1 i ( 12k
22t2)z and k5a1bi is the complex

eigenvalue. Note that, owing to the translational symmetry
the propagation equations,f 1 is defined only up to a multi-
plicative constant. At the second order,

f 25meh1h* , ~A8!

g252~r/r* !meh1h* , ~A9!

wherer5a1 i (b2c) and the coefficientm takes the form

m5F ~k1k* !2S t2

uru2
21D G21

. ~A10!

This defines the solution; calculations at higher orders rev
that Eqs.~A5! are satisfied to the fourth power ofl. A dark-
bright soliton, then, is of the form

e15t

12
r

r*
meh1h*

11meh1h* eicx1 i [ ~1/2!c21t2]z, ~A11!

e25
eh

11meh1h* . ~A12!

This solution can also be written in the more conveni
form presented in the main text as Eq.~15!.

2. Dark-bright multisoliton solutions

The calculation of this state is a tedious but straightf
ward algebraic exercise. We use the obvious quartic ans

g5g0~11l2g21l4g4!, h5lh11l3h3 ,
~A13!

f511l2f 21l4g4 ,

and substitute this into the Hirota equations of Eq.~8!, to
derive the nine relations analogous to Eqs.~A5!.

The solution to these equations is again found by beg
ning with the zeroth order. We choose exactly the same fo
again forg0, since the background is not changed. At t
first order, we choose

h15eh11eh2, ~A14!

in which each term describes one soliton. Calculations t
lead inexorably to the solution

e15t

12 (
j ,k51

2
r j

rk*
m jke

h j1hk*1
r1r2
r1* r2*

f 4
0eh11h1*1h21h2*

11 (
j ,k51

2

m jke
h j1hk*1 f 4

0eh11h1*1h21h2*
eip,

~A15!
le

f

al

t

-
tz

-
m

n

e25

(
j51

2

eh j1(
j51

2

n jkm1 jm2 je
h11h1*1h j

11 (
j ,k51

2

m jke
h j1hk*1 f 4

0eh11h1*1h21h2*
, ~A16!

where

m jk5F ~k j1kk* !2S ut0u2

r jrk*
21D G21

,

n jk5~k j2kk!S ut0u2

r jrk
11D , ~A17!

f 2
05m11m22un12m12u2.

Sadly there is no simple way to write this expression dow
please see the discussion in the text on the characteriza
and visualization of this expression.

It is also possible to extend this expression so as to
scribeN-soliton solutions. The ansatz that one chooses is
obvious generalization of Eq.~A13!, which leads to a series
with three equations at each of the 2N11 orders ofl. The
following prescription is the outcome of this procedure; su
stitution of it into the Hirota equations confirms that it d
scribes the dark-brightN-soliton.

f5( M1~a!expS (
j51

2N

ajh j1 (
1< j,k

2N

ajakAj ,kD ,
g5t0e

ipF( M2~a!expS (
j51

2N

aj~h j1z j !1 (
1< j,k

2N

ajakAj ,kDG,
~A18!

h5( M1~a!expS (
j51

2N

ajh j1 (
1< j,k

2N

ajakAj ,kD ,
where the first sum is over all possible permutations of
vectora5(a1 ,a2 , . . . ,a2N), in which eachaj can be either
0 or 1. The previous definitions for the two-soliton solutio
are extended as

h j1N5h j* , z j1N51/r j* , eAj ,k1N5m jk,
~A19!

eAj1N,k5m jk* , eAj ,k5n jk , eAj1N,k1N5n jk*

and

M15H 1 if (
j51

N

aj5 (
j5N11

2N

aj

0 otherwise,
~A20!

M25H 1 if (
j51

N

aj5 (
j5N11

2N

aj11

0 otherwise.
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